특이값 분해(Singular Value Decomposition)란 무엇인가? PyTorch, TensorFlow, Numpy 사용해 특이값 분해하기
·
Machine Learning Math/Linear Algebra
특이값 분해란 무엇인가?특이값 분해(Singular Value Decomposition, SVD)란 $m x n$ 차원의 행렬을 대각화해 세 개의 행렬로 분해하는 방법이다. 고유값 분해와 비슷하지만, 고유값 분해는 정사각 행렬에만 사용 가능한 반면, 특이값 분해는 직사각 행렬일 때도 사용 가능해 활용도가 높다. 특이값 분해를 수식으로 표현하면 다음과 같다. $$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$ 여기서 각 기호는 다음과 같다.$\mathbf{X}$ : $m \times n$ 행렬.$\mathbf{U}$ : $m \times m$ 정사각 행렬로, $\mathbf{X}$의 좌특이 벡터(Left Singular Vectors)로 구성돼 직교 행렬..